Positive Selection and Functional Divergence of R2R3-MYB Paralogous Genes Expressed in Inflorescence Buds of Scutellaria Species (Labiatae)

نویسندگان

  • Bing-Hong Huang
  • Erli Pang
  • Yi-Wen Chen
  • Huifen Cao
  • Yu Ruan
  • Pei-Chun Liao
چکیده

Anthocyanin is the main pigment forming floral diversity. Several transcription factors that regulate the expression of anthocyanin biosynthetic genes belong to the R2R3-MYB family. Here we examined the transcriptomes of inflorescence buds of Scutellaria species (skullcaps), identified the expression R2R3-MYBs, and detected the genetic signatures of positive selection for adaptive divergence across the rapidly evolving skullcaps. In the inflorescence buds, seven R2R3-MYBs were identified. MYB11 and MYB16 were detected to be positively selected. The signature of positive selection on MYB genes indicated that species diversification could be affected by transcriptional regulation, rather than at the translational level. When comparing among the background lineages of Arabidopsis, tomato, rice, and Amborella, heterogeneous evolutionary rates were detected among MYB paralogs, especially between MYB13 and MYB19. Significantly different evolutionary rates were also evidenced by type-I functional divergence between MYB13 and MYB19, and the accelerated evolutionary rates in MYB19, implied the acquisition of novel functions. Another paralogous pair, MYB2/7 and MYB11, revealed significant radical amino acid changes, indicating divergence in the regulation of different anthocyanin-biosynthetic enzymes. Our findings not only showed that Scutellaria R2R3-MYBs are functionally divergent and positively selected, but also indicated the adaptive relevance of regulatory genes in floral diversification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The R2R3-MYB Transcription Factor Gene Family in Maize

MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, includ...

متن کامل

Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication.

R2R3 Myb genes are widely distributed in the higher plants and comprise one of the largest known families of regulatory proteins. Here, we provide an evolutionary framework that helps explain the origin of the plant-specific R2R3 Myb genes from widely distributed R1R2R3 Myb genes, through a series of well-established steps. To understand the routes of sequence divergence that followed Myb gene ...

متن کامل

Imbalanced positive selection maintains the functional divergence of duplicated DIHYDROKAEMPFEROL 4-REDUCTASE genes

Gene duplication could be beneficial by functional division but might increase the risk of genetic load. The dynamics of duplicated paralogs number could involve recombination, positive selection, and functional divergence. Duplication of DIHYDROFLAVONOL 4-REDUCTASE (DFR) has been reported in several organisms and may have been retained by escape from adaptive conflict (EAC). In this study, we ...

متن کامل

Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death

The R2R3-MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some plant species, little is known about R2R3-MYB genes in canola (Brassica napus L.). In this study, we have identified 76 R2R3-MYB genes in the canola genome through mining of expressed sequence tags (ESTs). The cDNA sequences of ...

متن کامل

Isolation and Molecular Characterization of Thirteen R2R3-MYB Transcription Factors from Epimedium sagittatum

Epimedium sagittatum (Sieb. et Zucc.) Maxim, a popular traditional Chinese medicinal plant, has been widely used for treating sexual dysfunction and osteoporosis in China. The main bioactive components in herba epimedii are prenylated flavonol glycosides, which are end products of a branch of the flavonoid biosynthetic pathway. The MYB transcription factors (TF) act as activators or repressors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015